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Abstract

We describe work in progress concerning multi-
instrument, multi-satellite scheduling. Most, although
not all, Earth observing instruments currently in orbit
are unique. In the relatively near future, however, we
expect to see fleets of Earth observing spacecraft, many
carrying nearly identical instruments. This presents
a substantially new scheduling challenge. Inspired by
successful commercial applications of evolutionary algo-
rithms in scheduling domains, this paper presents work
in progress regarding the use of evolutionary algorithms
to solve a set of Earth observing related model prob-
lems. Both the model problems and the software are
described. Since the larger problems will require sub-
stantial computation and evolutionary algorithms are
embarrassingly parallel, we discuss our parallelization
techniques using dedicated and cycle-scavenged work-
stations.

Introduction

A growing fleet of NASA, commercial, and foreign
Earth observing satellites (EOS) uses a variety of sens-
ing technologies for scientific, mapping, defense and
commercial activities, hnage collection for these satel-
lites is planned and scheduled by a variety of software
systems (Muraoka et al. 1998, Potter and Gasch 1998,
Sherwood et al. 1998, and others). Science activities on
different satellites or even different instruments on the

same satellite are typically scheduled independently of
one another, requiring the manual coordination of ob-
servations by communicating teams of mission planners.
As the number of satellites and the number of observa-

tion requests grow- large, manual coordination will no
longer be possible. A more effective way to manage
observation scheduling is by allowing customers of the
data to request data products from a central authority
instead of an individual satellite or mission. Customer
preferences will constrain which satellite or satellites
will be used to collect the data. Automated techniques
can schedule the necessary resources. This should en-
able more efficient management of a fleet of satellites.
There has been some work toward automatic schedul-

ing of satellite fleets, e.g., Rao, et al. reported schedul-
ing ground station use, but not imaging activity, for a

fleet of seven Indian Earth imaging satellites (Rao et
al. 1998).

Scheduling EOS is complicated by a number of im-
portant constraints. Potin lists some of these con-
straints as:

1. Power and thermal availability

2. Limited imaging segments per orbit

3. Time required to take each image

4. Limited on-board data storage

5. Transition time between look angles (slewing)

6. Revisit limitations

7. Cloud cover

8. Stereo pair acquisition

9. (',round station availability, especially playback op-
portunities

Coordination of multiple satellites

Potin also notes that "ASAR offers, by exploiting
the combinations of polarizations and incidence angles,
37 different and mutually exclusive high rate operat-
ing modes" (Potin 1998) and Yamaguchi et al. note
that "ASTER could collect approximately 1.7 million
scenes of full-mode data. In practice, there will be fac-
tors that will decrease this amount, such as scheduling
inefficiencies" (italics added) (Yamaguchi et al. 1998),
suggesting that even scheduling a single instrument can
be challenging. ASAR is an Advanced Synthetic Aper-
ture Radar featuring enhanced capability in terms of
coverage, range of incidence angles, polarisation, and
modes of operation. ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer) is one
of several imaging instruments on Terra, launched in
1999. For further detail on the EOS scheduling prob-
lem see Sherwood et al. 1998 and Frank et al. 2002.

We hypothesize that evolutionary algorithms can ef-
fectively schedule Earth imaging satellites, both single
satellites and cooperating fleets. The constraints on
such fleets are complex and the bottlenecks are not
always well understood, a condition where evolution-
ary algorithms are often more effective than traditional
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techniques.Traditionaltechniquesoftenrequireade-
tailedunderstandingofthebottlenecks,whereasevolu-
tionaryprogrammingrequiresonlythatonecanrepre-
sentsolutions,modifysolutions,andevaluatesolution
fitness,notactuallyunderstandhowto reasonabout
theproblemorwhichdirectiontomodifysolutions(no
gradientinformationis required,althoughit canbe
used).

Totestthehypothesisrequiresa representativeset
ofproblemsandsoftwareto solvethem.Wearedevel-
opingasetofsuchproblemsthatcanbegeneratedby
AGI'sSatelliteToolKit (http://www.stk.com/)com-
binedwithsmallamountsof customsoftware.Weare
alsodevelopinganevolutionaryalgorithmandcustom
constraintsystemto solveEOSschedulingproblems.

Thenextsectiondescribesthemodelproblems.This
is followedbya descriptionof theevolutionarysoft-
wareandconstraintsystemunderdevelopment.Fi-
nally,sincecomplexproblemssometimesrequiresub-
stantiatcomputation,thefinalsectiondescribesourap-
proachtoparallelizationofthecomputationonalarge
numberofdedicatedandcycle-scavengedCPUs.

Model Problems

Sinceourprojectisdesignedtoconsiderthescheduling
ofaparameterizablegenericsystem,notanyparticular
spacecraft,sensor,orsatelliteconstellation,it isimpor-
tantto developa setof modelproblemsthat exhibit
theimportantaspectsof EOSschedulingnowandin
thefuture.In allcasesweattemptto baseourmodel
sensorsandsatellitesonhardwarecurrentlyin orbit,
althoughtheassociationisquitelooseandtheparam-
etersaremeantto berepresentative,notaccurate.Vvb
haveidentifiedandbegunto scopesixproblems:
1. A singlesatellitewitha slewableinstrument.This

problemexercisesslewschedulingonaninstrument
modeledonASTERslewing(Muraokaet al. 1998,
Yamaguchiet al. 1998)andtheLandsat ETM in-
strument (Potter and Gasch 1998) for other charac-
teristics. We are particularly interested in minimizing
slew time, since the ASTER instrument has a limited
lifetime slew budget. Minimizing slew while maxi-
mizing the number of images taken leads to a multi-

objective optimization problem. The Landsat pro-
gram has orbited a series of Earth imaging satellites,
including the first one, and the ETM (Enhanced The-
matic Mapper) is the main instrument on the more
recent satellites.

2. A single agile satellite with one instrument. This
is the same as problem one except that we assume
the whole spacecraft is slewed, rather than the in-
strument relative to the spacecraft. This allows more

complex pointing behavior (three axis instead of one).
Lamaitre et al. compared constraint satisfaction and
local search on a variant of this problem and found
that their local search algorithm out-performed con-
straint satisfaction (Lamaitre et al. 2000).

3. A single satellite with multiple instruments (one sle-
wane). This exercises multiple instruments sharing
satellite resources such as power and SSR (Solid State
Recorder - memory used to save images until they
can be sent to the ground). Lemaitre et al. found that

global optimization could out-perform static quotas
for the French SPOT satellite shared between two

users (Lemaitre et al. 1998). Problem three addresses
similar issues in a more complex environment loosely
based on the Aqua satellite (http://aqua.nasa.gov).

4. A large constellation of single- and multiple-
instrument satellites communicating directly with the
ground. This seeks to mimic hypothetical future

sensor webs, large constellations of Earth imaging
satellites competing for ground station time. The
same sensor is replicated on multiple satellites to re-
duce the time-between-images on the same request
and increase the total number of images that can be
taken. To model stereo pair problems, three pairs of
satellites with shared sensors will orbit one minute
apart and a fraction of their requests will be shared,
stereo pair requests. One of these pairs will include
a multiple-instrument satellite.

5. A large constellation of single-instrument slewable
satellites communicating with an in-orbit communi-
cations system based on high-data-rate lasers. This
problem assumes a robust inter-satellite communica-
tion system and a network of communication satel-
lites to reduce ground station contention and limit
on-board memory requirements.

6. The same as problem five, but with a much larger
number of satellites, multiple instruments, and re-
quirements to image the same target, at the same
time, from multiple angles and with different instru-
ments. This problem presumes much cheaper and
more reliable launch.

In all of the problems, we represent a request for an
image as a point where the point is assumed to be in
the center of the area to be imaged. Imaging time is
proportional to the length of the imaging area along the
satellite ground track and depends on the problem. In
some problems the imaging time varies. In all cases,
the number of requests is chosen to be large enough
so that all instruments should be over-subscribed. Re-

quests will be randomly generated and assigned a ran-
dom priority. Note that some missions aim for world-
wide repeated coverage over time and others are de-
mand driven, which may require somewhat different re-

quest sets. Since some sensors are sensitive to clouds,
and clouds are not randomly distributed, cloud cover
probabilities should be calculated from historical data.

Table 1 summarizes the problems, Table 2 summa-
rizes the satellites, and Table 3 summarizes the instru-
ments. Note that we have not yet found all the data
necessary for these models.

AIRS, AMSU, HSB, MODIS and AMSR are all in-
struments on NASA's Aqua satellite, launched 4 May



ID
1
2
3
4
5
6

scheduletime

1 week
ground stations

2 days

tests

slewing 1 A
agile 1 week 1 B

multiple instruments 2 days 2
sensor web

sensor web 2 days
sensor web 1 day

6

N/A

N/A

satellites

C

10D + 2C
10B

50B + 50B'

Table 1: Model problem summary.

[D modeled after instrument(s) SSR (bits) Power(kw)

A Aster/Landsat 1 375G 1.55
B Ikonos 3 12G

C Aqua 1,2 3,4,5 136G 4.6
D sensor web any one of 1-5 350G 1.55

Table 2: Satellite Summary. All satellites are in sun-synchronous orbits. B' is the same as B but images different

spectral bands where some imaging requires both types of sensors simultaneously.

ID

loosely modeled after

expected images per day
requests per day
time for request (sec)
data rate (bits/sec)
swath (kin)
cross track EOV (degrees)
FOV for point requests (+/-

degrees)
cross track slew limits (+/- de-
grees)
slew rate (degree/sec)
lighting
clouds ok

warm-up time (sec)
power (W)

1
ETM-ASTER

250
3OO
24

150M

AIRS-
AMSU-
HSB
100
151)
10-30
1.5M

3
IKONOS

7O
100
9O

4 5
MODIS AMSR

150 200
250 350

185 1650 13 2:330
7.47 49
25

24 N/A none N/A

1 N/A 6 pitch, 3 roll N/A
day any day any
no yes no no
72

220

7M 88K
1445

N/A

N/A
day
no

Table 3: Instrument characteristics. The AMSR instrument has five incompatible modes with one minute switching

time. The requests are randomly assigned between modes.
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2002.TheAIRS,AMSU,andHSBallhavesimilarop-
erationalcharacteristicsandaredesignedto workto-
gether,measuringdifferentaspectsof thesamearea.
TheIKONOSinstrumentis modeledaftera high-
resolution,agilecommercialEOSsatellite.

Evolutionary Algorithms and EOS

Scheduling

There are a number of evolutionary algorithms in the
literature. Vv'e are using a genetic algorithm (GA) to
address EOS scheduling. GAs seek to mimic natu-
ral evolution's ability to produce highly functional ob-
jects. Natural evolution produces organisms, whereas
GAs can produce schedules, programs, molecular de-
signs, and many other structures. Our GA employs the
following algorithm:

1. Represent each schedule with a permutation or a
Gantt chart; each schedule is called an individual

2. Generate a population of individuals with random
characteristics

3. Calculate the fitness of each individual

4. Repeat

(a) Randomly select parents with a bias towards better
fitness

(b) Produce children from the parents with either:
i. crossover that combines parts of two parents into

a child

ii. mutation that modifies a single parent
iii. or some combination of the two

(c) Calculate the fitness of the child

(d) Randomly replace individuals of tess fitness in the
population with the children

5. Until satisfied according to some minimal conver-
gence criteria

Evolutionary algorithms, particularly the genetic al-
gorithm, have been used to schedule a wide variety of
tasks. For example, Syswerda and Patmucci scheduled
the U.S. Navy% System Integration Test Station labo-
ratory for F-14 jet fighters using a GA with a permuta-
tion of tasks representation and a fast greedy sched-
uler to place tasks, one at a time, in the schedule
(Syswerda and Pahnucci 1991). Wolfe and Sorensen
compared three scheduling algorithms, including GA,
for EOS scheduling problems and found that GA pro-
duced the best schedules, albeit with a substantial CPU
time penalty (Wolfe and Sorensen 2000). Philip Hus-
bands provides a good, if somewhat dated, survey of
GA for scheduling problems (Husbands 1994).

Evolution is guided by a fitness function. The fitness
function must provide a fitness for any possible indi-
vidual, no matter how bad, and distinguish between
any two individuals, no matter how close they are. For
EOS scheduling, the fitness function is multi-objective.
These objectives include:

1. Maximize the number, quality and importance of the
images taken (takeImages). For scientific applica-
tions the importance can be measured by priority.
For commercial applications the importance can be
measured by dollar value.

2. For images that require certain weather conditions,
e.g., minimal clouds, maximize image taking redun-
dancy.

Minimize total slewing (slew motors wear out).

To investigate GA applied to EOS scheduling, we
are developing software to 1) compare a permutation
representation to a Gantt chart representation and 2)
compare squeaky-wheel versus blind transmission oper-
ators. Squeaky-wheel and blind operators are described
below. We also intend to compare GA scheduling with
an HBSS (Heuristic Biased Stochastic Sampling) EOS
scheduler under development at NASA Ames (Frank et

al. 2002) and are investigating a comparison with the
ASPEN scheduler from JPL (Sherwood et al. 1998).

One of the key issues for any evolutionary algorithm
is problem representation. We are currently investi-
gating two representations for the scheduling problem:
permutation and Gantt chart.

In the permutation representation, each individual is
a permutation of the requested takeImages. A greedy
scheduler attempts to schedule the requested takeIm-
ages in the order indicated by the permutation. The
first greedy scheduler was a minor modification of the
HBSS algorithm using the Europa constraint system
(Frank and Jonsson 2002) described in (Frank et aL
2002), but this software currently has performance
problems when scheduling thousands of takeImages.
When these problems are resolved we will use it for
HBSS/GA comparisons. In addition, we are devel-
oping a custom greedy scheduler as an extension to
the JavaGenes software (Globus et al. 2000). This

scheduler currently implements a permutation repre-
sentation, earliest-first scheduling heuristics, and sensor
availability and slewing constraints. This is a work-in-
progress paper, and there has not been enough time
to solve any of the model problems with this software.
Permutation is a well-studied GA representation for

scheduling (e.g., Whitley et al. 1989 Syswerda and Pal-
mucci 1991, Montana 2001, and others) and there are
many transmission operators in the literature. We are
currently using Syswerda and Palmucci's order-based
mutation and position-based crossover.

The Gantt chart representation is an extension of the
permutation representation where the scheduled loca-
tion of tasks in the parents is used in crossover and mu-
tation. SpecificalIy, rather than use heuristics to sched-
ule each task, the parental placement is attempted first.
In the crossover case, the parent to use may be chosen
at random.

In order to enforce the constraints, fast constraint
evaluation is necessary. Assuming digitized time, and
that. each take[mage should only be taken once (i.e.,
for sensors insensitive to clouds), all opportunities for
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one takeImage form a mutually exclusive set (only one
need be taken). Furthermore, for each time step the
possible takeImages from a single sensor form another
mutually exclusive set. All impossible slews between
takeImages can be computed and turned into binary
mutual exclusions (mutexes). The mutually exclusive
sets may be implemented as sets where only one value is
allowed, or by a set of mutexes. Note that this approach
to EOS scheduling does not automatically schedule a
takefmage when there is only one opportunity as this
may prevent an earlier-in-the-permutation takeImage
placement due to constraint violation.

If time is continuous and the satellite is agile (slews

cross- and along-track), the number of takeImage op-
portunities grows very large and precomputing the sen-
sor availability and slewing constraints becomes imprac-
tical. One approach to handling the constraints in this
case is to represent each resource as a timeline. Each
timeline then takes on appropriate values (e.g., in use
for a sensor, slew motor setting, power, SSR memory
available, etc.) at different times. Since values must be
frequentiy inserted into the timeline, a doubly linked
list is an appropriate data structure. However, finding
a particular time in a long inked list is very slow. This
can be solved by an array where each element points
to the linked list node at the time associated with that

array element, and the array elements are associated
with fixed time intervals. Thus, to find the node at

time 10,483 one simply calculates the appropriate ar-
ray index, a constant-time operation, rather than tra-
verse the linked list, an O(n) operation where n is the
number of nodes. As long as the interval represented
by each array element is not significantly longer than
the time represented by a typical linked list node, this
double data structure should be fast for insertion and

locating a particular time. This is the constraint data
structure currently being deveioped.

In most evolutionary algorithm representations, it is
difficult or impossible to determine which part of the
representation is responsible for improvement or degra-
dation to the fitness. However, for both EOS schedul-

ing representations this is not the case. For the per-
mutation representation, those takeImages that are not
scheduled are a drag on the fitness. In the Gantt chart
representation different time periods can exhibit high or
low fitness and time can be divided into intra-dependen_
time periods -- e.g., the times between data dumps to
the ground. Thus, rather than use traditional blind
GA transmission operators -- which do not evaluate
different parts of the representation -- it is possible
to use squeaky wheel (Joslin and Clements 1999) trans-
mission operators where the operator knows which part
of the representation should be modified. For exam-
ple, in the permutation case an unscheduled takeImage
could be mutated forward in the permutation (Joslin
and Clements 1999).

Parallelization

The vast majority of CPU time is expected to be spent
checking constraints, where the processing of each indi-
vidual is independent of others in the population. Thus,
the most compute-intensive portions of the GA can run
in parallel. Furthermore, to evaluate any stochastic
technique one must have multiple runs and make statis-
tical comparisons. Also, all GA runs have parameters,
e.g., population size, mix of crossover vs. mutation,
etc. It is rarely obvious, a priori, what the parameters
should be. A tedious hand search through this param-
eter space can be avoided by running many GA jobs
with randomized parameters. If the machine time is
low cost, e.g., if the cycles are scavenged from other-
wise idle work stations, GA parameter randomization
can be very effective (Globus, Menon, and Srivastava
2002). Vv'e have software systems in place that paral-
telize at both levels across runs and across individuals
within runs.

To parallelize across runs, we simply use scripts to
start many jobs on many machines and collect the re-
suits on disk. Across individual parallelization is via a
master/slaw_ architecture. The master is implemented
as a set of PHP programs running inside a web server.
The PHP programs use a mySQL database to maintain
the population. The slaves can run on any machine
with access to the web server. Slaves pick up individuals
from the master via http requests. Slaves send results
to the master for storage in the mySQL database.

In the future, we plan to combine these approaches
by using the master to mediate immigration between
populations. For additional details, see (Olobus 2001).

Slaves are run on a 72 CPU Beowulf cluster and/or

any available workstation. We plan to run a cycle-
scavenger on the 350+ workstations in our division to
run jobs nights, weekends and other times the work-
stations are idle. The Condor system (Litzkow, et al.
1988) has been effective in this role in our previous ge-
netic algorithm work (Globus et al. 2000).

Summary

Earth imaging satellite constellation scheduling is a
complex task with many variables and interacting con-
straints. We are defining a set of representative model
problems intended to exercise scheduling software in the
relevant dimensions. We hypothesize that evolutionary
programming can solve the EOS scheduling problem ef-
fectively and have begun the development of software
to test this hypothesis on the model problems. This
software is also being designed to compare permutation
vs. Gantt chart representations and squeaky-wheel vs.
blind transmission operators.
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